HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 FLUID MECHANICS \& HYDRAULIC MACHINES

(ME Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A ($5 \mathrm{X} 2=10 \mathrm{M}$)

Q.No.		Questions	Marks	CO	KL
1	a)	If the pressure at appoint below the sea is $137.7 \mathrm{KN} / \mathrm{m} 2$ what is the pressure 30 m below this point. Specific weight of ocean water is $10.06 \mathrm{KN} / \mathrm{m}^{2}$.	$[2 \mathrm{M}]$	1	
	b)	Define the equation of continuity.	$[2 \mathrm{M}]$	2	
	c)	State the term boundary layer.	$[2 \mathrm{M}]$	3	
	d)	Define specific speed of a turbine	$[2 \mathrm{M}]$	4	
	e)	What is cavitation in centrifugal pump?	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Write the types of fluids?	[5M]	1	
	b)	A solid cylinder of diameter 4 meters has a height 3 meters. Find the meta centric height of the cylinder when it is floating in water with its axis vertical. The specific gravity of the cylinder is 0.6 .	[5M]	1	
OR					
3.	a)	Differentiate between piezometer and U-tube Manometer With a neat sketch	[5M]	1	
	b)	An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve. The diameter of shaft is 0.5 m and it rotates at 200 rpm . Calculate the power lost in the oil for a sleeve length of 100 mm . The thickness of the oil film is 1.0 mm .	[5M]	1	
UNIT-II					
4.	a)	Describe steam function and velocity function?	[5M]	2	
	b)	Derive the derivation of three dimensional continuity equation?	[5M]	2	
OR					
5.	a)	Explain the significance of dimensionless numbers in dimension analysis?	[5M]	2	
	b)	Find the displacement thickness, the moment thickness and the energy thickness for the velocity distribution in the boundary given by $u / U=(y / \delta)$ 0.22 where u is the velocity at a distance y from the plate and $u=U$ at $y=\delta$, where $\delta=$ boundary layer thickness.	[5M]	2	
UNIT-III					
6.	a)	Derive an expression of the force exerted by a jet of water on moving inclined plane in the direction of the jet.	[5M]	3	
	b)	Derive an expression of the force exerted by a jet of water on stationary inclined plane in the direction of the jet.	[5M]	3	

7.		Design a Francis turbine .net head $=68 \mathrm{~m}$; speed $=750 \mathrm{rpm}$ output power= $330 \mathrm{~kW} ; \eta \mathrm{h}=94 \% ; \eta \mathrm{O}=85 \%$; flow ratio $\psi=0.15$; breadth ratio $\mathrm{n}=0.1$; inner diameter of runner is 0.5 times outer diameter Also assume 6% of circumferential area of the runner to be occupied by the thickness of vanes. Velocity of the flow remains constant and radial at the exit.	[10M]	3	
UNIT-IV					
8.	a)	Explain with neat sketch the operation and utility of hydraulic ram.	[5M]	4	
	b)	Explain with neat sketch the operation of governing of turbine?	[5M]	4	
OR					
9.	a)	Show the specific speed of the turbine equations?	[5M]	4	
	b)	Explain the operating and constant efficiency curves in the turbines?	[5M]	4	
UNIT-V					
10.	a)	Write the working principle of single acting reciprocating pump?	[5M]	5	
	b)	Define (i) NPSH, (ii) negative slip (iii) positive slip and (iv) coefficient of discharge?	[5M]	5	
OR					
11.	a)	Explain the characteristic curves of the centrifugal pump?	[5M]	5	
	b)	Define heads and efficiencies of the centrifugal pumps?	[5M]	5	

