Code	No:	P18	BME	T03				
HAl	LL T	ICK	ET N	NUM	IBEI	}		

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 FLUID MECHANICS & HYDRAULIC MACHINES

(ME Branch)

Time: 3 hours Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	If the pressure at appoint below the sea is 137.7 KN/m2 what is the pressure 30m below this point. Specific weight of ocean water is 10.06 KN/m ² .	[2M]	1	
	b)	Define the equation of continuity.	[2M]	2	
	c)	State the term boundary layer.	[2M]	3	
	d)	Define specific speed of a turbine	[2M]	4	
	e)	What is cavitation in centrifugal pump?	[2M]	5	

PART-B

Answer One Question from each UNIT (5X10=50M)

		Answer One Question from each OTVIT (5A10-301VI)	3.6.1				
Q.	No.	Questions	Marks	СО	KL		
UNIT-I							
2.	a)	Write the types of fluids?	[5M]	1			
	b)	A solid cylinder of diameter 4 meters has a height 3 meters. Find the meta	[5M]	1			
		centric height of the cylinder when it is floating in water with its axis					
		vertical. The specific gravity of the cylinder is 0.6.					
		OR					
3.	a)	Differentiate between piezometer and U-tube Manometer With a neat sketch	[5M]	1			
	b)	An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve.	[5M]	1			
		The diameter of shaft is 0.5 m and it rotates at 200 rpm. Calculate the power					
		lost in the oil for a sleeve length of 100 mm. The thickness of the oil film is					
		1.0 mm.					
		UNIT-II					
4.	a)	Describe steam function and velocity function?	[5M]	2			
	b)	Derive the derivation of three dimensional continuity equation?	[5M]	2			
		OR					
5.	a)	Explain the significance of dimensionless numbers in dimension analysis?	[5M]	2			
	b)	Find the displacement thickness, the moment thickness and the energy	[5M]	2			
		thickness for the velocity distribution in the boundary given by $u/U = (y/\delta)$					
		0.22 where u is the velocity at a distance y from the plate and u=U at y= δ ,					
		where δ = boundary layer thickness.					
		UNIT-III		•			
6.	a)	Derive an expression of the force exerted by a jet of water on moving	[5M]	3			
		inclined plane in the direction of the jet.					
	b)	Derive an expression of the force exerted by a jet of water on stationary	[5M]	3			
		inclined plane in the direction of the jet.					
	1	OR		1	I		

R18

Code No: P18MET03

7.		Design a Francis turbine .net head =68 m; speed =750 rpm output power= 330 kW; η h=94%; η o=85%; flow ratio ψ =0.15; breadth ratio n=0.1; inner diameter of runner is 0.5 times outer diameter Also assume 6% of circumferential area of the runner to be occupied by the thickness of vanes. Velocity of the flow remains constant and radial at the exit.	[10M]	3			
		UNIT-IV					
8.	a)	Explain with neat sketch the operation and utility of hydraulic ram.	[5M]	4			
	b)	Explain with neat sketch the operation of governing of turbine?	[5M]	4			
	OR						
9.	a)	Show the specific speed of the turbine equations?	[5M]	4			
	b)	Explain the operating and constant efficiency curves in the turbines?	[5M]	4			
	UNIT-V						
10.	a)	Write the working principle of single acting reciprocating pump?	[5M]	5			
	b)	Define (i) NPSH, (ii) negative slip (iii) positive slip and (iv) coefficient of discharge?	[5M]	5			
	OR						
11.	a)	Explain the characteristic curves of the centrifugal pump?	[5M]	5			
	b)	Define heads and efficiencies of the centrifugal pumps?	[5M]	5			
